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INVITED ARTICLE

Reorientational dynamics of conjugated nematic point defects

A.M. Sonneta and E.G. Virgab*

aDepartment of Mathematics and Statistics, University of Strathclyde, Livingstone Tower, 26 Richmond Street, Glasgow G1 1XH,

Scotland, UK; bDipartimento di Matematica and CNISM, Università di Pavia, Via Ferrata 1, 27100 Pavia, Italy

(Received 3 December 2009; accepted 13 March 2010)

To appreciate the universal qualitative features of defect annihilation in nematic liquid crystals, we study how the
viscous force of reorientational dynamics behaves under a transformation that reverses the sign of the defect’s
topological charge. As an illustration of our general results, we consider a class of point defects that were first
studied by A. Saupe. The reorientational viscous forces acting on them differ dramatically from those acting on line
defects.

Keywords: liquid crystals; defect dynamics; parity

1. Introduction

Most nematic liquid crystals are optically uniaxial,

that is, their Fresnel ellipsoid is symmetric about an

axis, the nematic director n. However, the director may

change within the fluid, responding to both flow and

external influences, such as electric or magnetic fields.
The high susceptibility of the nematic director to such

influences makes nematic liquid crystals fascinating

fluids with impressive optical properties and a still

unexhausted potential for applications.

Perhaps the most striking and colourful optical

manifestations of nematic liquid crystals are their

defects, which are singularities in the optic axis texture,

where the nematic director field n is discontinuous. All
possible types of defects are classified by their topolo-

gical charge, according to the general ideas first put

forward by Poincaré [1] in a purely mathematical con-

text, and then applied to ordered media by Nabarro

[2]. In nematic liquid crystals, the topological charge is

either a half-integer or an integer, connected with

either a line or point discontinuity in the director

field. It can be computed from this field in a neigh-
bourhood of the discontinuity, where n has regained

smoothness. The topological charge is invariant under

smooth deformations of the director field, and so it

captures the characteristic qualitative features of a

defect. Because of the absence of any positional

order, all line defects found in nematic liquid crystals

are of the disclination-type [3].

Technically, the topological charge of a line or point
defect can be computed from the field n restricted along

a path or upon a surface enclosing the defect (see, for

example, [4] and [5], to the latter of which we also refer

the reader for the general aspects of defect dynamics).

Like the electric charge, the topological charge is addi-

tive: when, depending on the defect dimension, it is

computed either along a path or upon a surface that

encloses more than a single defect, the topological

charge associated with such a collection of defects is

the algebraic sum of the topological charges attributed

to every single defect. In particular, when the director is

prescribed on the boundary @b of a region b contain-
ing a liquid crystal, the boundary data prescribes the

total topological charge of all defects present at any

time within b, either at equilibrium or out of it. Thus,

whenever the director field on @b carries a topological

charge different from zero, at least one defect is present

in the interior of b. Clearly, there may be more: only

their total topological charge is determined by the

boundary conditions.
Defects do not occur only in equilibrium director

fields. Out of equilibrium, they tend to move within

the fluid so as to reduce the elastic energy connected

with director distortions. In the absence of boundary

frustrations, the director field of an ordinary, non-

chiral nematic would be uniform in space; distortions

arise in response to non-uniform boundary condi-

tions. For the nematic to attain the minimum of the
elastic free energy, defects may move and annihilate,

involving no or little hydrodynamic flow. Often, the

relaxation dynamics of the director field is assumed to

be purely reorientational: defects then move due to a

change in director orientation at all points, without

any material flow.

Phenomenologically, defect dynamics result from

balancing gains in the elastic free energy and viscous
losses, both associated with defect displacements.

Even in the absence of flow, a viscous damping is
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present; it has its physical origin in the microscopic

reorientational dynamics. For clarity, we shall refer to

the corresponding damping force acting on a defect as

a reorientational viscous force, and to the extra damp-

ing force, associated with a possible flow, as a viscous

drag force. The simple idea of balancing elastic gains

and viscous losses was first applied by Brochard [6] to
the motion of a domain wall and then extended to

defect motion by numerous works, of which [7] is

perhaps the earliest.

A phenomenological model for both elastic and

reorientational viscous forces, although originally con-

ceived for smectic C liquid crystals, was first proposed

by Pleiner [8]. In [9], Ryskin and Kremenetsky phrased

the problem of computing the reorientational viscous
force acting on a moving disclination within the general

dynamical Ericksen–Leslie theory (an extensive

account of which can be found, for example, in [10]).

In the approach of [9], the effective viscosity associated

with the reorientational viscous force is computed for a

drifting director configuration that solves the balance

equation of torques, including the reorientational vis-

cous torque resulting from the drift. This approach
essentially relies on a dissipation identity stating that

in the absence of flow the rate of change of the total

elastic free energy stored in the domain occupied by the

liquid crystal is counterbalanced by the total energy

dissipated in the same domain by viscous losses. The

method of [9] substantially improves upon the approx-

imation of Imura and Okano [11], also followed by de

Gennes [12], according to which the effective viscosity is
computed on a drifting equilibrium configuration that

solves the balance equation of torques, neglecting any

viscous contribution to this balance. For this approx-

imation to deliver a finite effective viscosity, the total

dissipation must, however, be confined within a

bounded region enclosing the disclination, with the

disadvantage of making the effective viscosity depend

on the size of such an arbitrary cut-off region.
Notwithstanding this limitation, the drifting equilibrium

approximation is capable of capturing the essence of

defect dynamics even when an explicit solution to the

complete balance equation of torques is not available.

In the notable case of the motion of a straight disclina-

tion of arbitrary topological charge, the general analy-

tic solution to the complete balance equation of torques

was obtained by Denniston [13].
One of the most fascinating phenomena in defect

dynamics is the annihilation of two defects with oppo-

site topological charges. Many contributions have

been made in the past decades to the modelling of

this phenomenon. While most are mainly concerned

with the annihilation of disclinations [7, 13–21], a few

also consider the annihilation of point defects [22–25],

among which [22] and [25], in particular, resort to a

scaling argument to justify an evolution equation for

annihilation dynamics.

Perhaps the most striking feature of annihilation

dynamics, for both disclinations and point defects, is

the asymmetry in the velocity under sign reversal of

the topological charge. Such an asymmetry, also con-

firmed by the experiments of [20, 21, 24] and the
numerical simulations of [15, 17, 18], is generally

ascribed to backflow, that is, to flow induced by the

defect motion. This flow can be different in the vicinity

of defects with different topological charges, and so it

can produce different viscous drag forces.

We have also contributed to this view, proposing in

[26] a phenomenological model for the annihilation of

disclination pairs of any topological charge, based on
the balance of the three types of forces acting on defects,

properly derived within the paradigm of the

Ericksen–Leslie theory. These forces are the elastic

force, the reorientational viscous force and the viscous

drag force (see also [27]). We showed in [26] that the

asymmetry in the disclination annihilation, as mea-

sured by an appropriate scalar parameter evolving in

time, depends on both the viscous drag force and the
reorientational viscous force, and depends significantly

on the latter only for moderate inter-disclination dis-

tances. This result followed from the dependence of the

asymmetry parameter on the relative reorientation

velocity, which was assumed to be symmetric.

In this paper, we take a different, although com-

plementary avenue to explain the asymmetry in defect

annihilation, concentrating attention on point defects.
Applying general concepts of continuum mechanics,

we derive a supplementary balance law for the forces

on a defect, be it a line or a point. For the sake of

argument, we neglect backflow, so that the balance of

forces includes only the elastic force and the reorienta-

tional viscous force. We explore how both these forces

change under the parity transformation that reverses

the sign of the defect’s topological charge. Our general
conclusion is that, even when backflow is neglected, an

asymmetry in defect annihilation results from an

asymmetry in the reorientational viscous force under

sign reversal of the topological charge. There are,

however, important differences in the behaviour of

point and line disclinations. While for line disclina-

tions the reorientational viscous force is simply pro-

portional to the topological charge, only point defects
with topological charge s ¼ 1 feel any reorientational

viscous force at all. Even in the case when s ¼ 1, the

magnitude and sign of the force still depend on the fine

structure of the defect. Free defects can indeed con-

tinuously deform such that they would not feel any

force. It can thus be expected that reorientational

viscous forces lead to an asymmetric annihilation

only if boundary conditions fix the defect structure,
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as is the case in [24], where the director is subject to

homeotropic anchoring in a capillary.

The paper is organised as follows. In Section 2 we

recall the basic balance laws of the Ericksen–Leslie

theory and we deduce from them the balance of both

elastic and viscous forces acting on a defect, making

the very definition of these defect forces precise. In
Section 3, we illustrate the analytic definition of topo-

logical charge for point defects that we adopt in this

paper. In Section 4, we show how the topological

charge is reversed in sign by the action of a reflection

that thus constitutes a parity transformation, which

also affects both the elastic force and the reorienta-

tional viscous force. The latter is computed in Section

5 for the combed defects [23] first studied by Saupe [28]
in a special case. Finally, in Section 6 we summarise

the main conclusions of our work. A technical appen-

dix with an auxiliary result closes the paper.

2. Defect forces

The dynamics of nematic liquid crystals is commonly

described by the Ericksen–Leslie equations, a system

of coupled partial differential equations for flow and

orientation. Finding solutions to the full set of these
equations usually requires one to resort to numerical

methods. Here, we do not aim to construct solutions

but rather to assess the driving forces that govern

defect motion. We choose to neglect material flow

altogether, which leads to a significant simplification

of the stress tensor. It consists of an elastic stress that

depends on the director gradient �n and a reorienta-

tional viscous stress that depends on the rate of change
of the director n. Furthermore, we take the elastic free-

energy density, W, in the one-constant approximation,

W ¼ 1

2
Kð�nÞ2; ð1Þ

with a single elastic modulus K.

The elastic stress, sometimes called the Ericksen
stress, can then be written in the form [29]

TðeÞ ¼ 1

2
Kð�nÞ2I� Kð�nÞT ð�nÞ; ð2Þ

where I is the identity tensor. In the absence of flow,

the entire viscous stress is due to director

reorientations,

TðrÞ ¼ 1

2
�1ðn# n

� � n
�

#nÞ; ð3Þ

where �1 is a rotational viscosity coefficient and n
�

is

the director’s co-rotational time derivative, which in

the absence of material flow equals its partial time

derivative, n
� ¼ @n=@t.

We now consider a small region of liquid crystal b

with boundary @b. The stresses in Equations (2) and

(3) result in tractions on the boundary and thereby,

once integrated over the boundary, in contact forces

on the region. With the two components of the stress as
identified previously, we accordingly define an elastic

force f (e) and a reorientational viscous force f (r) via

f ðeÞ :¼
Z
@b

TðeÞnda ð4Þ

and

f ðrÞ :¼
Z
@b

TðrÞnda; ð5Þ

where n is the outer unit normal to @b and a is the area

measure. It is worth noting for later use that, by

Equations (2) and (3), reversing n into -n changes neither
T(e) nor T(r), thus also leaving f (e) and f (r) unchanged.

Let b contain a single defect. At equilibrium, T ¼
T(e) and div T ¼ 0. Even in this case the force f (e) in

Equation (4) may not vanish because T(e) fails to be

smooth in @b and so the divergence theorem cannot

be applied in the whole of b. This is certainly the case

for defects pinned in space by some external agents. In

fact, the elastic force will only be independent of b,
which makes it meaningful to speak of a force on the

defect. In general, when div T � 0, it is still possible to

define a force on the defect by considering the limit as

b shrinks to the defect; see [29].

3. Topological charge

Defects are singularities in the director field, where the

nematic order is effectively lost. Nematic point defects

can be organised in distinct topological classes [4]; the

members of each class are director fields that can be

transformed into one another through continuous map-

pings, whereas members of different classes cannot be

continuously connected. All topological classes are clas-
sified in terms of a topological invariant, which charac-

terises the members in one and the same class. Here we

show how this invariant is related to the topological

charge of a nematic point defect. We explore in some

detail this classical notion, reviewing the equally classical

means to compute the topological charge, with the objec-

tive of learning later how it behaves under the parity

transformation introduced in the following section.
An effective way to illuminate the topological charge

of a point defect is to imagine the point singularity of the

director field surrounded by a closed, regular, orientable
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surface s. Restricting n onto s, we may picture the

restricted field ns as a mapping from s into the unit

sphere S2 in three-dimensional space. Intuitively, the

topological charge N(n) of the defect enclosed by s is
the number of times s is wrapped around S2 by ns,

counted algebraically, that is, with a positive or negative

sign, according to whether the orientation of s is pre-

served or not by ns at each individual wrapping. By its

very notion, N(n) is an integer independent of s. As

pointed out in [30], the topological charge of a point

defect in the director field n coincides with the Brouwer

degree of n around that point; an abstract definition of
this concept, central to non-linear functional analysis,

can be found, for example, in [31].

Here we are interested in computing N(n). Let the

surface s be such that it is endowed with a system of

orthogonal coordinates with integral lines having unit

tangent vectors e1 and e2, oriented so that n � e1 � e2 ¼
1,where n is the outer unit normal tos. Let p be a point
on s mapped by n to the vector n(p) on S2. For e . 0
sufficiently small, the points pi¼ pþ eei, i P {1, 2}, are
mapped to ni ¼ n(p) þ e� n(p)ei. Thus the triangle on
the tangent plane to s at p with vertices p, p1 and p2 is
mapped to the triangle on the tangent plane to S2 at
n(p) with vertices n(p), n1 and n2. The area of the former
triangle is

Ap ¼
1

2
n � ee1 � ee2 ¼

1

2
e2: ð6Þ

Similarly, since

n � ð�nÞei ¼ 0 for i ¼ 1; 2;

as (�n)T n ¼ 0, the signed area of the latter triangle is

AnðpÞ ¼
1

2
e2n � ð�nÞe1 � ð�nÞe2 þ oðe2Þ; ð7Þ

where An(p) is positive or negative, depending on

whether the vectors (�n) e1, (�n) e2 and n have the

same orientation as e1, e2 and n or not. We conclude

from Equations (6) and (7) that the Jacobian determi-

nant J of ns, seen as a transformation that maps s

into S2, possibly more than once, is

J ¼ n � ð�nÞe1 � ð�nÞe2;

and so the topological charge of n is given by

NðnÞ ¼
R
s

n � ð�nÞe1 � ð�nÞe2da

aðS2Þ
¼ 1

4p

Z
s

n � ð�nÞe1 � ð�nÞe2da: ð8Þ

Apparently, this formula was first given in [32].

Strictly speaking, since both e1 and e2 are tangential

unit vectors, �n should be replaced in Equation (8) by

the surface gradient �sn, thus making Equation (8) a
formula defined solely in terms of the field ns.

Equation (8) for N(n) seems to require the existence

on s of a system of global orthogonal coordinates.

Actually, Equation (8) can be given an equivalent,

intrinsic form that does not require this property of

s. For any second-rank tensor L, there exists another

second-rank tensor L*, which we call the adjugate of L,

characterised by the following property,

La� Lb ¼ L�ða� bÞ; ð9Þ

for all vectors a and b. Whenever L is invertible, its

adjugate L* can be given the following explicit

representation:

L� ¼ detLðL�1ÞT: ð10Þ

In general, the entries L�ij of the matrix representing L*

in any given basis are the cofactors of the matrix

representing L in the same basis. In particular,

L�ij ¼
1

2
eihkejlmLhlLkm; ð11Þ

where eihk are the components of Ricci’s alternator

and summation is understood on repeated indices

(see, for example, Chapter 2 of [33]). Since n ¼ e1 �
e2, by Equation (9) we can also rewrite Equation (8) as

NðnÞ ¼ 1

4p

Z
s

n � ð�nÞ�n da: ð12Þ

According to [5], this formula was first obtained in

[34]. Here again (�n)* could be replaced by (�sn)* to

make it clear that also in Equation (12) N(n) depends

only on ns. This conclusion could also be reached

directly from Equation (12), ignoring that it derives

from Equation (8), as

n ¼ ðn # nÞn ¼ ðI� n # nÞ�n

and then

ð�nÞ�n ¼ ð�nÞ�ðI� n#nÞ�n ¼ ð�snÞ�n;

since by a classical result (see, for example, p 261

of [35]),

ðABÞ� ¼ A�B�; ð13Þ
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for any two second-rank tensors A and B. Note that

when both A and B are invertible Equation (13) fol-

lows directly from Equation (10).

In the following we shall indifferently employ either

Equation (8) or (12) to compute the topological charge

of a nematic point defect. A remarkable property of

N(n) is its additivity: if the surfaces encloses more than
one point defect, the topological charge of the director

field is the sum of the individual topological charges

that Equations (8) and (12) deliver when applied to

surfaces that enclose a single point defect. For a pair

of defects, this easily follows from computing the inte-

gral in Equation (12) on a dumb-bell surface s that

encloses both defects within spheres connected through

a slender cylinder: in the limit as the cylinder’s radius
shrinks to nothing, the integral in Equation (12) tends

to the sum of the charges entrapped by the spheres.

As pointed out in Section VII.E.3 of [4], the topo-

logical charge N(n) does not identify uniquely the

topological class to which a point defect belongs:

point defects with opposite topological charges are

indeed topologically equivalent, as the director field

describing the one can continuously be transformed
into the director field describing the other. Thus,

strictly speaking, the topological classes of non-trivial

nematic point defects can be classified in terms of

|N(n)|, and the positive integers would suffice to

describe all of them. Perhaps, the easiest illustration

of such a redundancy of N(n) in classifying point

defects is obtained by reversing the sign of n, which

does not effectively change the nematic director field,
but reverses the sign of N(n). This follows immediately

from Equation (8) and also from Equation (12) upon

noting that (-I)* ¼ I.

Although it may not serve the purpose of classify-

ing nematic point defects, still the topological charge

N(n) is a powerful tool; actually, our development will

be built on its additivity. When defects with opposite

topological charges occur in pairs, the overall director
field has zero total charge and so it belongs to the same

topological class as a continuous, defect-free director

field. Thus, pairs of defects with opposite topological

charges can be annihilated as a result of a continuous

transformation, leaving behind no trace of their exis-

tence. In the following section, we shall introduce a

transformation that reverses the sign of the topologi-

cal charge of a point defect by acting on the director
field n in a less trivial way than just reversing it into -n;

our major objective will be to see how this transforma-

tion affects the forces f (e) and f (r) introduced in the

preceding section. The sign of the topological charge

will play a role in these forces, despite the fact that

defects with opposite topological charges belong to

one and the same topological class.

4. Parity conjugation

Any defect is related to another defect, conjugated to

it, by means of a parity transformation. For any fixed

unit vector e, such a parity transformation is given by

R ¼ I� 2e # e ð14Þ

and it defines for any director field n a conjugated field
�n via

�n :¼ Rn: ð15Þ

We note that R is an orthogonal transformation with

det R ¼ -1, and since it is also symmetric, it yields

indeed a parity transformation, R2 ¼ I, so that

n ¼ R�n:

Let the topological charge Nð�nÞ of the parity-conjugated

defect be computed as in either Equation (8) or (12). It

follows from Equation (15) that

ð��nÞ� ¼ ðR�nÞ� ¼ R�ð�nÞ�;

since R is constant. Moreover, by Equation (10), R*¼
(det R) R ¼ -R, and we easily obtain from Equation

(12) that

Nð�nÞ ¼ 1

4p

Z
s

�n � ð��nÞ�nda

¼� 1

4p

Z
s

Rn � Rð�nÞ�n da ¼ �NðnÞ:
ð16Þ

This shows that Nð�nÞ ¼ �NðnÞ, independent of the

choice of unit vector e.

The classical example of a pair of parity-conjugated

defects is that of the radial and hyperbolic hedgehogs.

The radial hedgehog is represented by the director field

nR :¼ er, where er is the radial unit vector of spherical

coordinates; the hyperbolic hedgehog is thus repre-
sented by nH :¼ �nR ¼ Rer, where R is as in Equation

(14). It is easily seen that N(nR) ¼ 1 and N(nH) ¼ -1.

We now examine how the elastic and reorientational

viscous forces behave under the parity transformation.

This will allow us to make qualitative predictions on the

dynamics of the annihilation of a pair of parity-conju-

gated defects. To this end, we consider defects with direc-

tor configurations n that exhibit an axis of symmetry e,
we use the parity transformation in Equation (14) defined

by that axis e and we assume that the defects move along

that same axis e. By symmetry, the forces in Equations (4)

and (5) then lie along e, and so they take the forms

f ðeÞ ¼ f ðeÞe and f ðrÞ ¼ f ðrÞe: ð17Þ
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Recalling that ��n ¼ R�n, the elastic stress �TðeÞ in

the configuration �n is found to be

�TðeÞ ¼ 1

2
Kð��nÞ2I� Kð��nÞTð��nÞ

¼ 1

2
KðR�nÞ2I� Kð�nÞT RRð�nÞ

¼ 1

2
Kð�nÞ2I� Kð�nÞTð�nÞ ¼ TðeÞ:

ð18Þ

It follows that �f ðeÞ ¼ f ðeÞ. This is a special property of

the one-constant approximation in Equation (1) and

does not hold for more general elastic energy densities.

To evaluate the reorientational viscous force,

notice that @�n=@t ¼ R@n=@t so that �TðrÞ ¼ RTðrÞR.

The scalar force �f ðrÞ is then found to be

�f ðrÞ ¼ �f ðrÞ � e ¼
Z
@b

ðRTðrÞRnÞ � e da

¼ �
Z
@b

ðTðrÞRnÞ � e da

¼ �f ðrÞ � eþ 2

Z
@b

ðe � nÞðTðrÞeÞ � e da ¼ �f ðrÞ;

ð19Þ

where we have used Re ¼ -e, the definition of R and

the fact that T(r) is skew symmetric. In [15, 17], the
authors made the conjecture that TðrÞ ¼ ��TðrÞ.
However, it is evident from Equation (19) that the

anti-symmetry is a property of the reorientational vis-

cous force and in general not of the stress.

In defect annihilation, a defect and its parity-con-

jugated companion approach each other and even-

tually a defect free state ensues. The elastic and

reorientational viscous forces on the defects would
induce backflow, which in view of Equations (18)

and (19) would be clearly non-symmetric. For a pair

of annihilating defects, the situation is as sketched in

Figure 1. The defect on the left, n2, is obtained from

the one on the right, n1, by applying both the parity

transformation R in S2, as shown in Equation (15),

and the mirror reflection in space through the mid-

plane �e between the defects, represented by

ðp� oÞ7!Rðp� oÞ;

for all points p in space and o P �e. Thus, in view of

Equations (17), (18) and (19), the elastic and viscous

forces f
ðeÞ
2 and f

ðrÞ
2 acting on n2 are related to the

corresponding forces f
ðeÞ
1 and f

ðrÞ
1 acting on n1 through

the relations

f
ðeÞ
2 ¼ �f

ðeÞ
1 and f

ðrÞ
2 ¼ f

ðrÞ
1 : ð20Þ

The elastic forces drive the annihilation process by

dragging the defects towards each other, and in this
process the resulting reorientational viscous forces

accelerate one defect and slow down the other. We

examine in the following section the way in which the

reorientational viscous force and its sign depend on

the topological charge of the defect.

5. Combed point defects

To obtain an analytical estimate of the reorientational

viscous force that acts on a moving defect, we consider

equilibrium defect configurations, that is, configura-

tions that are minimisers of the elastic free energy in

Equation (1). This entails two seemingly severe limita-

tions. First, for equilibrium configurations with free,
unpinned defects, the elastic force vanishes identically

[29], and so there would be nothing to set the defect in

motion in the first place. Secondly, a moving defect

can be expected to experience a dynamical deforma-

tion. However, since a moving defect and its station-

ary equilibrium counterpart are in the same

topological defect class, it stands to reason that the

reorientational viscous force in our somehow artificial
scenario is a good approximation to that experienced

by a real moving defect. In particular, our simplified

model should predict correctly the dependence of the

force on the topological nature of the defect.

5.1 Director field

We now consider point defects with a director field

that minimises the free energy. A class of defects of this

type was first described by Saupe [28]. Here, we con-

sider the larger class of solutions studied in [23].
We start by introducing spherical coordinates both

in space and for the director orientation. Following

the notation of [28], we write the director n in terms of

its azimuthal angle W and its polar angle j according to

n ¼ sin# cosjex þ sin# sinjey þ cos#ez ð21Þ

n2 n1

(e)f2 f2
f1

f1

(r) (e)

(r)

Figure 1. Elastic and viscous forces acting on a defect pair.
The elastic forces set both defects in motion towards one
another, and the reorientational viscous forces speed up one
defect and slow down the other.
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and we express any point p in space in terms of its

polar angle �, its azimuthal angle a and its distance

from the origin r (see Figure 2).

Then the Cartesian unit vectors (ex, ey, ez) and the

local frame (er, e�, ea) are connected by the following

relations:

er ¼ sin � cos aex þ sin � sin aey þ cos �ez; ð22aÞ

e� ¼ cos � cos aex þ cos � sin aey � sin �ez; ð22bÞ

ea ¼ � sin aex þ cos aey ð22cÞ

and

ex ¼ sin � cos aer þ cos � cos ae� � sin aea; ð23aÞ

ey ¼ sin � sin aer þ cos � sin ae� þ cos aea; ð23bÞ

ez ¼ cos �er � sin �e�: ð23cÞ

We look for director fields that are both independent

of r and cylindrically symmetric around the z-axis. For

such a director field, the z-component of Equation

(21) cannot depend on a and so W is a function of �
only, W ¼ W(�). We make the additional assumption

that the defect structure is not twisted along the z-axis,

that is, we assume that j¼j(a) so that the normalised

projection n? 2 S2 of the director field n on the xy-

plane is the same for all z. The gradients of W and j
then take the simple forms

�# ¼ #
0

r
e� and �j ¼ j0

r sin �
ea: ð24Þ

With this, the gradient of n becomes

�n ¼ ex# cos# cosj
#0

r
e� � sin# sinj

j0

r sin �
ea

� �

þ ey# cos# sinj
#0

r
e� þ sin# cosj

j0

r sin �
ea

� �

� sin#
#0

r
ez # e�:

ð25Þ

With the aid of Equation (8), we can now compute

the topological charge of a defect represented as in

Equation (21). We take s as a sphere of radius a

centred at the origin, and we choose e� and ea as the

two vectors in the tangent plane tos corresponding to
e1 and e2 in Equation (8). We then obtain from

Equations (25), (22c) and (22b) that

ð�nÞe� ¼
1

r
#0ðcos# cosjex þ cos# sinjey � sin#ezÞ;

ð�nÞea ¼
1

r sin �
j0 sin#ð� sinjex þ cosjeyÞ;

whence, by Equation (21), it follows that

n � ð�nÞe� � ð�nÞea ¼
1

r2 sin �
#0j0 sin#:

We then readily arrive at

NðnÞ ¼ 1

4p

Z p

0

a sin � d�

Z 2p

0

a
sin#

a2 sin �

d#

d�

dj
da

da

¼ 1

4p
½jð2pÞ � jð0Þ�½cos#ð0Þ � cos#ðpÞ�:

ð26Þ

At equilibrium, �n has to be parallel to n, where � is the

Laplace operator, that is, the equilibrium equation is

(I - n # n) �n¼ 0. An explicit computation shows that

r2 �n� �n � nð Þnð Þ

¼ cos# cosj #00 � tan# tanj

sin2 �
j00

�

þ cot �#0 � sin# cos#

sin2 �
j0

2

�
ex

þ cos# sinj #00 � tan# cotj

sin2 �
j00

�

þ cot �#0 � sin# cos#

sin2 �
j0

2

�
ey

� sin# #00 þ cot �#0 � sin# cos#

sin2 �
j0

2

� �
ez:

ð27Þ

x

y

ϕ

α

ϑ

δ

z

p

n

Figure 2. Spherical coordinates for space and orientation:
at any point with coordinates (r, a, �) the director orientation
is given in terms of the polar and azimuthal angles W and j.
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This can be identically zero only when j00 ¼ 0 so that

j ¼ saþ j0 with s 2 Z; j0 2 0; 2p ;�½ ð28Þ

where s 2 Z follows from the requirement that n^ | a¼0¼
n^ | a¼2p

1. With j given by Equation (28), j02¼ s2, and

from all three components of Equation (27) we arrive at
the same differential equation for W:

sin2 �#00 þ sin � cos �#0 � s2 sin# cos# ¼ 0: ð29Þ

Equation (29) can be solved by using the substitutions

t :¼ tan
#

2
and t :¼ tan

�

2
: ð30Þ

These lead to

1þ t2
� �

t2€t� 2tt2 _t2 þ 1þ t2
� �

t_t� s2 1� t2
� �

t ¼ 0;

ð31Þ

where the dot denotes differentiation with respect to t.

This equation has a solution of the form t ¼ Atb with

b2 ¼ s2, so that

tan
#

2
¼ A� tan

�

2

� �� sj j
: ð32Þ

By computing Equation (26) on a solution given by

Equations (28) and (32), we easily find that the topo-

logical charge of the defect is

NðnÞ ¼ �s; ð33Þ

where the choice of either sign is the same as in the

exponent of the right-hand side of Equation (32).

In [28], Saupe chose A� ¼ 1 to obtain defects with

mirror symmetry with respect to the xy-plane.

However, it proves very interesting to consider also

the case with general A, which leads to combed defects

[23]. First, notice that changing -|s| intoþ|s| leaves the

director field unchanged when A is changed into -1 / A

at the same time:

A tan
�

2

� �� sj j
¼ tan

#

2

) �A�1 tan
�

2

� � sj j
¼ � cot

#

2
¼ tan

#� p
2

;

and changing W by p merely sends n into -n in

Equation (21). If n is identified with -n, it is therefore

sufficient to consider only the solutions with þ|s|,

which we will henceforth do.

The parity transformation in Equation (14) with
e ¼ ez can now simply be realised by replacing A

by -A, which by Equation (32) maps W to -W, and so,

by Equation (21), maps n to � �n. In this case, the

transformation A 7! -A does not affect the topological

charge of n because it also entails a director inversion.

This clearly agrees with Equation (26), according to

which N(n) is independent of A.

Since both the elastic and viscous forces f (e) and
f (r) on a defect are invariant under inversion of n, the

transformation A 7! -A has exactly the same effect on

them as the parity transformation in Equation (14)

with e ¼ ez.

It is worth noting that for combed point defects the

parity transformation may be trivial. For example,

this is the case for s ¼ -1, as shown in Appendix A.

As a consequence of Equation (19), the reorientational
viscous force f (r) acting on this defect must vanish.

As mentioned before, when A ¼ �1, a defect given

by Equation (32) is mirror-symmetric with respect to

the xy-plane. The mapping A 7! 1 / A sends a defect into

its mirror image with respect to the xy-plane, n 7! ñ, and

so it reverses the direction of the combing. If

tan #
2
¼ A tan �

2

� � sj j
, then

tan
#̃

2
¼ A�1 tan

�

2

� � sj j
, cot

#̃

2
¼ A cot

�

2

� � sj j

, tan
p� #̃

2
¼ A tan

p� �
2

� � sj j
;

which implies that #̃ð�Þ ¼ p� #ðp� �Þ, that is,

ñzðx; y; zÞ ¼ �nzðx; y;�zÞ.
Figure 3 shows the integral lines on the zx-plane of

the field n in Equation (21) when s ¼ 1 and j0 ¼ 0

in Equation (28); the parameter A takes the values

� 1
2

, -2, 1
2

and 2 to illustrate the effects of the trans-

formations A 7! 1 / A and A 7! -A discussed pre-

viously. These graphs show why these defects are

said to be combed.

5.2 Free energy

We now compute the free energy of the equilibrium

director fields in Equations (21). For functions W (�)
and j (a), from Equations (21) and (24) we find that

�nj j2¼ 1

r2
#0

2 þ sin2 #

sin2 �
j0

2

 !
: ð34Þ

An expression for W0 can be obtained by implicit dif-

ferentiation of Equation (32) with respect to �:

#0 ¼ A sj j
1þ tan2 �

2

� �
tan sj j�1 �

2

1þ A2 tan2 sj j �
2

: ð35Þ
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While j0 is simply s, making use of the identity

sin# ¼ 2 tan #
2

�
1þ tan2 #

2

� �
and the equivalent one

for sin � shows that

sin#

sin �
¼ A

1þ tan2 �
2

� �
tan sj j�1 �

2

1þ A2 tan2 sj j �
2

ð36Þ

and so both terms on the right-hand side of Equation

(34) yield the same contribution, independent of a.
Hence, the free energy density of Equation (1) takes

the form

1

2
K �nj j2¼ K

r2
#0

2

: ð37Þ

In particular, it follows from Equations (37) and (35)

that for |s| ¼ 1, along the z-axis,

1

2
K �nj j2¼ K

z2

A2 z > 0
1

A2 z < 0:

�

Thus, when |A| . 1, the distortion caused by the defect is

concentrated in the region where z . 0, and when |A| ,

1, the distortion caused by the defect is concentrated in

the region where z , 0.

Moreover, the free energy stored in a ball of radius

R with the defect at its centre is found as

F ¼K

Z R

0

Z 2p

0

Z p

0

#0
2

r2
r2 sin �d�dadr

¼ 4pKRA2s2

Z p

0

tan2 sj j�1 �
2
þ tan2 sj jþ1 �

2�
1þ A2 tan2 sj j �

2

	2
d�:

ð38Þ

The last integral can be evaluated using the substitu-

tion t ¼ tan �
2
, and we find

F ¼ 4pKR sj j: ð39Þ

The result in Equation (39) shows that the free energy
is proportional to the defect strength |s| and that it is

independent of A. First, this shows that any defect has the

same free energy as its conjugated counterpart.

Furthermore, at least in the one-constant approxima-

tion, an ideally symmetric defect with |A| ¼1 has the

same elastic free energy as a deformed one with |A| � 1.

In particular, in the limiting cases as |A| ! 0 and

|A|!1 the director field becomes homogeneous every-
where except for an infinitesimal tubular region around

the positive (or negative) z-axis; see Figure 4.

This explains the frequent occurrence in Schlieren

textures of s ¼ 1 disclination lines joining two point

defects: this configuration indeed minimises the over-

all free energy. This same limit can also be reached by

(a)

(c) (d)

(b)

Figure 3. Integral lines on the zx-plane of the director field n in Equation (21), for s¼ 1, j0¼ 0 in Equation (28), and (a) A¼ -2,
(b) A ¼ �1

2
, (c) A ¼ 1

2
and (d) A ¼ 2. A dot marks the point where the director field is discontinuous.
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scaling another family of equilibrium director fields,

which in some recent literature (see, for example, [36]),

have been called skyrmions, from the Skyrme model

for concentrated structures in nuclear physics [37],

while they are formally equivalent to the escaped direc-

tor fields of Cladis and Kléman [38]. In [36], these
equilibrium fields have been studied for the general

energy density with three unequal elastic constants,

K1, K2 and K3, that reduces to Equation (1) for K1 ¼
K2 ¼ K3 ¼ K. A remarkable result of [36] is that when

all K are not equal only skyrmions with s ¼ 1 are

equilibrium solutions. The occurrence of one and the

same limit for both skyrmions and combed defects

suggests that for unequal elastic constants the latter
might also exist at equilibrium only for s ¼ 1, a con-

jecture that deserves further consideration.

While by Equation (39) a single defect has, in prin-

ciple, infinite energy (in practice only limited by the

container size), if a second defect is present the two

can pair up without any expenditure of elastic energy.

If the distance between the two defects is L ¼ 2R, the

total free energy then becomes F ¼ 4pKL|s| with the
director field away from the defects being homoge-

neous, a conclusion anticipated in [39] with an intuitive

argument. This mechanism realises the absolute mini-

miser of the free energy: it was shown that for equal

elastic constants the minimum energy of a set of point

defects with topological charge �s is 4pKL|s|, where L

is the minimal total length of dipoles formed by pairing

the point defects [40–42]. This conclusion was further
extended in [43] to the general case of unequal elastic

constants, arriving at a formula for the minimum elastic

energy that was later rediscovered in [36].

It should, finally, be noted that for any finite A � 0

two matched director fields described by Equations

(28) and (32) would not be true minimisers of the free

energy for a pair of point defects. Unlike for disclina-

tions in the two-dimensional case, for point defects in
three dimensions there is no superposition principle

that would allow the solutions for two individual
defects to be added.

5.3 Reorientational viscous force

To assess the reorientational viscous force, we assume

that a defect is drifting with instantaneous velocity u in

a given direction so that the director field at a point p

at time t þ e is given by

nðp; tþ eÞ ¼ nðp� eu; tÞ: ð40Þ

By no means is u to be thought of as being constant in

time. It follows that

@n

@t
¼ �ð�nÞu; ð41Þ

so that @n
@t
¼ n
�

is, in this case, completely determined by

the director field, n, and the drift velocity, u. The reor-

ientational viscous force, f (r), can then in principle be
found explicitly by computing the integral in Equation

(5). We want to compute it for a combed point defect. If

the defect drifts along its symmetry axis in the z-direc-

tion with velocity u¼ uez and the force is computed on a

ball with radius rc centred on the defect, by symmetry it

must be in the z-direction, f ðrÞ ¼ f ðrÞez. From Equation

(5) with Equations (3) and (41),

f ðrÞ ¼ ez � f ðrÞ ¼
1

2
�1u

Z 2p

0

Z p

0

½ðn � erÞðez � ð�nÞezÞ

� ðn � ezÞðer � ð�nÞezÞ�r2
c sin � d� da;

ð42Þ

which turns out to be

f ðrÞ ¼ 1

2
�1urc

Z 2p

0

Z p

0

#0 cosðj� aÞ sin3 � d� da: ð43Þ

(a) (b)

Figure 4. Integral lines as in Figure 3, for (a) A¼ -50 and (b) A¼ 1/50, illustrating how the director distortion is concentrated
along a narrow tubular region on one side of the z-axis, the other side being covered when A is transformed into 1/A.
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With j as in Equation (28), cosðj� aÞ ¼ cos

ððs� 1Þaþ j0Þ, and carrying out the integration in a
yields

f ðrÞ ¼ 0 s � 1

p�1urc cosj0

R p
0
#0 sin3 �d� s ¼ 1:

�
ð44Þ

This shows that the situation for point defects is strik-

ingly different from that for disclinations studied in

[26, 27]. Not only is the force not proportional to the
topological charge s, it is different from zero only for

s ¼ 1. Furthermore, the magnitude and sign of f (r)

depend on cos j0 and so can be changed by a contin-

uous local transformation of the director field. In

particular, for j0 ¼ p/2, the force vanishes.

Our last task is to assess the effect of A in Equation

(32) on the force. Since only s ¼ 1 is of interest, from

Equation (35)

#0 ¼ A
1þ tan2 �

2

1þ A2 tan2 �
2

ð45Þ

and then

Z p

0

#0 sin3 � d� ¼ 4A

ðA2 � 1Þ3
ðA4 � 1� 2A2 ln A2Þ :

ð46Þ

Thus, for s ¼ 1,

f ðrÞ ¼ p�1urc cosj0gðAÞ ð47Þ

with

gðAÞ :¼ 4A

ðA2 � 1Þ3
ðA4 � 1� 2A2 ln A2Þ: ð48Þ

The function g has the symmetry properties

gðAÞ ¼ �gð�AÞ and gðAÞ ¼ gðA�1Þ: ð49Þ

This means that the parity transformation of changing

A into -A in Equation (32) merely changes the sign of

g. Hence the reorientational viscous force on a defect is

equal and opposite to the force on its parity-conju-

gated defect. Reversing the combing direction,

A 7!1=A, leaves the force unchanged.

The graph of g illustrated in Figure 5 clearly exhi-
bits these properties. The function g(A) approaches

zero for A! 0 and A!�1. Its extrema are attained

as limA!�1 gðAÞ ¼ �4
3
. This means that the symmetric

defects will feel the highest viscous force, while the

deformed tubular defects that join two dipoles would

see zero viscous force. This means that no symmetric

defects should occur in any dynamical situation.

6. Conclusions

The dynamics of defect annihilation in nematic liquid
crystals is a fascinating problem which challenges the

mathematical modeller. Proper numerical solutions of

the general governing equations are difficult to obtain

and to interpret correctly. One important conclusion

of our work is that numerical results obtained in two-

dimensional computations for disclinations cannot be

used to explain the behaviour of point defect

dynamics, as an important player such as the reorien-
tational viscous force computed here for combed point

defects is completely different from its counterpart

computed for disclinations in [26, 27], to the point of

vanishing for most values of the topological charge.

In our search for distinctive qualitative features of

defect dynamics, we have also reached a conclusion

that helps to explain experimental results. Specifically,

in the Cladis–Brand experiment [24], the boundary
conditions at the capillary wall fix the defect structure

so that s ¼ 1 and j0¼ 0 on the boundary and j0�p
2

in

the bulk. Since g is odd in A and by Equation (47) f (r)

is odd in u, when a defect and its parity-conjugated

companion move one towards the other, they suffer

the same reorientational viscous force; see also

Equation (20). In particular, orienting the z-axis oppo-

site to the direction of motion of the radial hedgehog,
in the annihilation we have u ¼ uez with u , 0, and so

by Equation (47) the radial hedgehog will be acceler-

ated by the reorientational viscous force and the

hyperbolic hedgehog will be slowed down, as was

indeed observed in [24].

–1.5

–1

–0.5

0

0.5

1

1.5

–10 –5 0 5 10

g(
A
)

A

Figure 5. Graph of g against A. Dashed and solid lines
correspond to one another through the transformation A!
-1/A, while they are exchanged under the transformation A
! -A.
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In general, it would be interesting to see how mov-

ing point defects that are free to choose their fine

structure will deform dynamically: will they minimise,

maximise or try to eliminate the viscous force? This

question can, in principle, be answered by numerical

computations.

Point defects with s � 1 are extremely rare animals:
because of their high elastic energy, they are not

observed in practice. For them we found a vanishing

reorientational viscous force. We also conjectured that

they may fail to be at equilibrium as soon as the elastic

constants fail to be equal to one another.

Note

1. Half-integer values of s are allowed in Equation (28), but

they do not lead to point defects. Indeed, changing j by

p leaves n invariant in Equation (21) for the defect-free

homogeneous director field W ; 0, and it leads to -n
when # ; p

2
, which gives line defects.
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[36] Bogdanov, A.N.; Rößler, U.K.; Shestakov, A.A. Phys.

Rev. E: Stat., Nonlinear, Soft Matter Phys. 2003, 67,
016602.

[37] Skyrme, T.H.R. Proc. R. Soc. London A 1961, 260,
127–138.
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Appendix A. Point defects with s ¼ -1

It was remarked in [44] that for s ¼ -1 the symmetric

defect (in our notation, A ¼ 1) and its parity-conju-

gated defect coincide. We show here a slightly more

general result.

For point defects of the type considered in Section

5 with W ¼ W (�) and s ¼ -1, j ¼ -a þ j0, the con-

jugated defect �n can be obtained by rotating the defect

n by an angle of p/2 around the z-axis, i.e.
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QnðrÞ ¼ ��nðQrÞ; ðA1Þ

where Q ¼ ey#ex � ex#ey þ ez#ez. To see this, call

ã :¼ a� j0. Then j ¼ �ã and Equation (21) becomes

n ¼ sin# cos ãex � sin# sin ãey þ cos#ez ðA2Þ

and correspondingly

� �n ¼ � sin# cos ãex þ sin# sin ãey þ cos#ez: ðA3Þ

Since the rotation simply adds p/2 to a and hence to ã,

� �nðQrÞ ¼ � sin# cosðãþ p
2
Þex

þ sin# sinðãþ p
2
Þey þ cos#ez: ðA4Þ

At the same time,

Qn ¼ sin# sin ãex þ sin# cos ãey þ cos#ez; ðA5Þ

and Equations (A4) and (A5) indeed coincide.

This means that as long as symmetry around the

z-axis is maintained, all forces in the z-direction on n
and �n must be equal. Since the reorientational viscous

forces are equal and opposite it follows that they are
zero. This holds for any function W(�).
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